2,509 research outputs found

    Bending models of lipid bilayer membranes: spontaneous curvature and area-difference elasticity

    Full text link
    We preset a computational study of bending models for the curvature elasticity of lipid bilayer membranes that are relevant for simulations of vesicles and red blood cells. We compute bending energy and forces on triangulated meshes and evaluate and extend four well established schemes for their approximation: Kantor and Nelson 1987, Phys. Rev. A 36, 4020, J\"ulicher 1996, J. Phys. II France 6, 1797, Gompper and Kroll 1996, J. Phys. I France 6, 1305, and Meyer et. al. 2003 in Visualization and Mathematics III, Springer, p35, termed A, B, C, D. We present a comparative study of these four schemes on the minimal bending model and propose extensions for schemes B, C and D. These extensions incorporate the reference state and non-local energy to account for the spontaneous curvature, bilayer coupling, and area-difference elasticity models. Our results indicate that the proposed extensions enhance the models to account for shape transformation including budding/vesiculation as well as for non-axisymmetric shapes. We find that the extended scheme B is superior to the rest in terms of accuracy, and robustness as well as simplicity of implementation. We demonstrate the capabilities of this scheme on several benchmark problems including the budding-vesiculating process and the reproduction of the phase diagram of vesicles

    Analysis of Noisy Evolutionary Optimization When Sampling Fails

    Full text link
    In noisy evolutionary optimization, sampling is a common strategy to deal with noise. By the sampling strategy, the fitness of a solution is evaluated multiple times (called \emph{sample size}) independently, and its true fitness is then approximated by the average of these evaluations. Previous studies on sampling are mainly empirical. In this paper, we first investigate the effect of sample size from a theoretical perspective. By analyzing the (1+1)-EA on the noisy LeadingOnes problem, we show that as the sample size increases, the running time can reduce from exponential to polynomial, but then return to exponential. This suggests that a proper sample size is crucial in practice. Then, we investigate what strategies can work when sampling with any fixed sample size fails. By two illustrative examples, we prove that using parent or offspring populations can be better. Finally, we construct an artificial noisy example to show that when using neither sampling nor populations is effective, adaptive sampling (i.e., sampling with an adaptive sample size) can work. This, for the first time, provides a theoretical support for the use of adaptive sampling

    Constraining Sub-Parsec Binary Supermassive Black Holes in Quasars with Multi-Epoch Spectroscopy. II. The Population with Kinematically Offset Broad Balmer Emission Lines

    Get PDF
    A small fraction of quasars have long been known to show bulk velocity offsets in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (~sub-pc) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selected a sample of 399 quasars with offset broad H-beta lines from the SDSS DR7 quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad H-beta lines with a rest-frame baseline of a few years to nearly a decade. Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad H-beta lines in 24 of the 50 objects. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either H-alpha or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters. [Abridged]Comment: 23 pages, 18 figures, ApJ in pres

    Arbitrary slip length for fluid-solid interface of arbitrary geometry in smoothed particle dynamics

    Full text link
    We model a slip boundary condition at fluid-solid interface of an arbitrary geometry in smoothed particle hydrodynamics and smoothed dissipative particle dynamics simulations. Under an assumption of linear profile of the tangential velocity at quasi-steady state near the interface, an arbitrary slip length bb can be specified and correspondingly, an artificial velocity for every boundary particle can be calculated. Therefore, bb as an input parameter affects the calculation of dissipative and random forces near the interface. For b→0b \to 0, the no-slip is recovered while for b→∞b \to \infty, the free-slip is achieved. Technically, we devise two different approaches to calculate the artificial velocity of any boundary particle. The first has a succinct principle and is competent for simple geometries, while the second is subtle and affordable for complex geometries. Slip lengths in simulations for both steady and transient flows coincide with the expected ones. As demonstration, we apply the two approaches extensively to simulate curvy channel flows, dynamics of an ellipsoid in pipe flow and flows within complex microvessels, where desired slip lengths at fluid-solid interfaces are prescribed. The proposed methodology may apply equally well to other particle methods such as dissipative particle dynamics and moving particle semi-implicit methods

    Simulation and evaluation of 2-m temperature over Antarctica in polar regional climate model

    Get PDF
    The European Centre for Medium-Range Weather Forecasts Reanalysis ERA40, National Centers for Environmental Prediction (NCEP) 20th-century reanalysis, and three station observations along an Antarctic traverse from Zhongshan to Dome-A stations are used to assess 2-m temperature simulation skill of a regional climate model. This model (HIRHAM) is from the Alfred Wegener Institute for Polar and Marine Research in Germany. Results show: (1) The simulated multiyear averaged 2-m temperature field pattern is close to that of ERA40 and NCEP; (2) the cold bias relative to ERA40 over all of Antarctic regions is 1.8°C, and that to NCEP reaches 5.1°C; (3) bias of HIRHAM relative to ERA40 has seasonal variation, with a cold bias mainly in the summer, as much as 3.4°C. There is a small inland warm bias in autumn of 0.3°C. Further analysis reveals that the reason for the cold bias of 2-m temperature is that physical conditions of the near-surface boundary layer simulated by HIRHAM are different from observations: (1) During the summer, observations show that near-surface atmospheric stability conditions have both inversions and non-inversions, which is due to the existence of both positive and negative sensible heat fluxes, but HIRHAM almost always simulates a situation of inversion and negative sensible heat flux; (2) during autumn and winter, observed near-surface stability is almost always that of inversions, consistent with HIRHAM simulations. This partially explains the small bias during autumn and winter
    • …
    corecore